
University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Science

EECS 150 Mike Lowey

Fall 2001

Project Checkpoint 2

CD-ROM Drive Control

ATA/ATAPI CD-ROM Interface Specifications:

 In this stage of the project we will be implementing a small subset of the ATAPI CD-

ROM interface commands. By using just 3 of the available CD-ROM commands we will be able

to duplicate most of the controls on a normal CD player.

 Most hard-disk drives and CD-ROM drives are controlled by a standard known as ATA

or the newer version ATAPI. ATAPI added a feature known as command packets to the older

ATA standard (the –PI in ATAPI stands for Packet Interface). In the ATA interface, commands

are sent to the drive using a system of command blocks. These blocks consist of 7 bytes of data

being written to the drive in a particular order. Using this system the host device will write set-up

parameters in to 6 registers and then write the command to be executed in to the command

register. The command block structure, register addresses, and functions are in the pictures below.

The registers are addressed using the signals CS0-, CS1-, DA2, DA1, and DA0. These signals are

each specific wires on the 40-pin bus. CS0- and CS1- are active low, so in the table above they

are zero when asserted. The complete list of the pins is below:

In ATA data and command blocks are written to the registers using the lower 8 of the 16 data

wires. The signals that control reading and writing to and from the registers are called DIOW-

(write) and DIOR- (read). Both of these signals are active low as well. To write data to a register

you should assert the address (CS0-, CS1-, DA0, DA1, DA2) , assert the data, and pull DIOR-

low at the same time. Remember that some of the signals are active low. The only command

block that we will use is the called PACKET. This command was added to the ATA standard to

allow for the addition of a new set of commands. The structure for the PACKET command block

is pictured above. Its command value is A0h. I have noticed that A0h will execute without having

to set up any registers beforehand. You can just write the single command.

 When the PACKET command block is written the drive knows that the next command

will be an ATAPI command packet. The structure of command packets is different than command

blocks.

Command packets are 12 bytes long and contain the command code in the first set of data written.

In ATAPI reading and writing happen using all 16 data bits. The difference can be seen on the

ATAPI register map below. This means that the bytes are written two at a time to the device. The

lower numbered byte will be in the low order 8 bits and the higher numbered byte will be in the

upper 8 bits. In ATAPI CS0- and CS1- are called CS1FX and CS3FX. The register map is read

exactly the same way. Reading and writing data is also handled the same way as ATA except that

the data now flows 16 bits at a time. Submitting the packet above would take 6 writes to the ATA

command register (see the register map below). I think that they try to make the names as

confusing as possible…

 To execute an ATAPI CD-ROM command packet we first write the ATA PACKET

command block (A0h), wait, and then write the ATAPI command packet. The timing of these

operations is very important. You must wait around 5µsec between writing A0h and beginning

the CD-ROM command packet. The duration of each write or read is also very important. Writing

out at our maximum clock speed of 16MHz gives us 62.5nsec / write. Anything slower than this

won’t work so be careful to write to the bus as fast as possible. As the sequence of commands is

written , you must leave a space between each write for the command to be interpreted correctly.

I have been using 080000h (DIOR-, DIOW-, CS0-, CS1-, DA0, DA1, DA2, DD[15:0]) and it

makes a good no-op. To wait for the 5µsec I write about 75 no-ops to the bus and then start the

packet. I am sure that there are better ways to do it, but that is a start. This is a good time to start

to consider the amount of redundant data in your design and begin to think about how to

compress it.

 The ATAPI packet example above is the PLAY AUDIO MSF command. This is one of

the commands that we will be using for the project. Its structure is very intuitive. The MSF

format is a refreshingly simple way to address locations on the disk:

 M = minutes

 S = seconds

 F = frame

NOTE: The term “frame” is used in two different ways in the CD-ROM media standard. The intended
meaning can only be determined from the context. Whenever possible, this description replaces the larger
data unit with the more familiar term sector. The primary exception to this policy is the use of frame when
referring to the MSF address. In the MSF context, one frame (F field unit) equals one sector. On a typical
two channel CD-DA media, each frame (F field unit) is played in 1/75th of a second.

To play the section of music on the disk from 15-minutes to 20-minutes time you would write the

following series of data words to the command register:

 0047 - first 2 bytes – reserved and play op-code

 1500 - starting M field and reserved

 0000 - starting F field and starting S field

 0020 - ending S field and ending M field

 0000 - reserved and ending F field

Reserved fields should get zeros.

 For this checkpoint we are going to give you an I/O block that has all of the pins set up

correctly for you. It is a good idea to have all of your pins instantiated in one macro to keep track

of them. It also makes it easier to find pins to use for debugging.

This is a list of the pins that you will need to wire for the 40-pin connector:

Xilinx cd pin# signal
Pin# name

3 1 reset
4 3 DD7
5 4 DD8
6 5 DD6
7 6 DD9
8 7 DD5
9 8 DD10
10 9 DD4
14 10 DD11
18 11 DD3

29 12 DD12
51 13 DD2
61 14 DD13
62 15 DD1
68 16 DD14
69 17 DD0
56 18 DD15
77 21 DMARQ
50 23 DIOW-
35 25 DIOR-
36 27 IORDY
37 28 CSEL
38 29 DMACK-
39 31 INTRQ
40 32 RESERVED
44 34 PDIAG-
45 35 DA0
46 36 DA2
47 37 CS0-
48 38 CS1-
49 39 DASP-
40 33 DA1

Please wire the 40-pin connector as close to the end of the board with the power connectors as

practical. You will need the space in the middle for more chips and it would be a problem to wire

wrap around the IDE cable. You will be provided with a Chekpoint2.bit file that will test your

wiring.

Checkpoint Overview:

 There are four main tasks for CP#2. The first will be to wire wrap the IDE cable

connector and test it with the .bit file provided. The second will be to implement a series of

commands that will give us CD player functionality. The third will be to implement an

approximation of a working table of contents (TOC) for your player to use. The fourth will be to

replace your random time function from CP#1 with something that actually counts time.

IMPLEMENTING COMMMANDS:

You will be implementing the following functions in the CD player:

 PLAY - Plays CD from beginning to end

 NEXT TRACK - Plays the next track

 PREVIOUS TRACK - Plays the previous track

 STOP - Terminates playing and resets current track to zero

 PAUSE / RESUME - Pauses or resumes playback at current time

 EJECT - Ejects disk from player

All of these functions can be implemented by using one of three built in commands. The

commands that we will be using are:

- PLAY AUDIO MSF (47h)

- START / STOP UNIT (1Bh)

- PAUSE / RESUME (4Bh)

PLAY AUDIO MSF can be used to implement PLAY, NEXT TRACK, and PREVIOUS TRACK.

This is because it allows us to easily specify in minutes and seconds the place to begin playback.

We will be creating a primitive TOC that will contain the start times of the tracks, so jumping

from track to track should be easy.

START / STOP UNIT can be used to stop playback, eject the disk, or load a disk. We will be

using it to do the first two.

PAUSE / RESUME will do exactly what it says.

TABLE OF CONTENTS:

In this section you will create a TOC for a CD. This is a bit of a kludge, but it makes other

functions possible until someone figures out how to use the READ TOC (43h) command (extra

credit?). Groups should pick a CD and manually create an array of its track starting times in

minutes and seconds. You will also need to keep a record of you current track number and update

it appropriately in response to the various commands.

TIME:

In this section you will make the digits that appear on the LCD represent actual time. They should

display the elapsed time since the beginning of the current track. This is a simple case. It should

reset to zero and begin counting (in minutes and seconds) each time a new track if played. It

should stop counting and resume in the same place when playback is paused and resumed. It

should reset to zero when playback is stopped. The elapsed time does not need to reset if the

player plays through one track and begins another. The output should refresh at least once a

second. It doesn’t need to be 100% exact either. Incrementing every 0.953674 seconds would be

fine (16M/224).

Name_______________________________ Name__________________________________

Project Checkpoint 2

Checkoff Sheet

Design

 Design time counter before lab __________________(5%)

 FSMs designed before lab __________________(5%)

Testing

 Play works __________________(10%)

 Next Track works __________________(10%)

 Prev Track works __________________(10%)

 Pause works __________________(10%)

 Resume works __________________(10%)

 Stop works __________________(10%)

 Eject works __________________(10%)

 TOC works __________________(10%)

 Time works __________________(10%)

Turned in on time (2 weeks) __________________(100%)

Turned in one week late (3 weeks) __________________(50%)

Turned in one week early (1 week) __________________(120%)

