15 gennaio 12, 15:59 | #211 (permalink) Top | |
User | Citazione:
Tra l'altro Frank mi ha fatto notare che è già implementato lo Studio di Stabilità, che se usato correttamente, pare rispecchiare moolto bene la realtà. Ovvio che essendo cosa "nuova", e vap nn è ancora disponibile alcun tutorial, e siccome pare che la Materia Stabilità dei velivoli (aeromodelli d'alianti compresi..) per essere "dipanata" con sufficente confidenza da parecchie centinaia di pagine fitte-fitte di Matematica "tosta", nn starei a fare troppo il pretenzioso con chi l'ha finalmente implementata e resa fruibile da un SW liberamente scaricabile, ma un minimo di studio per comprender la materia credo vada fatto almeno come "infarinatura". Certo, un minimo di sperimentazioni Strumentate "necessarie" sarebbe d'obblico per le opportune verifiche sul modelli per poter dire l'ultima parola, ma forse facendo un passo alla volta .... Altrettanto Vero, è il voler Sostenere Tesi senza conoscere la materia, non è Presuntuoso, ma soprattutto Inutile . A. | |
15 gennaio 12, 16:05 | #212 (permalink) Top | |
User | Citazione:
A. | |
15 gennaio 12, 17:24 | #213 (permalink) Top |
User | Occhio, che in realtà quei Vettori sono calcolati per una condizione non propriamente Reale.... !!!! Da quel che mi è dato di capire (e perdonate i miei limiti...), e certo che dovrei approfondire l'uso corretto di XFOIL (di cui Profili è solo un'interfaccia), in pratica i vettori sono calcolati "forzando" il profilo (peraltro di lunghezza infinita) a lavorare ad un certo Alfa ed Re. Perciò nn credo sia corretto assimilare tali vettori al funzionamento dell'ala Reale, ne ad una sezione particolare della stessa...., sia perchè ciò in un modello non accade MAI, e perchè nn tien conto delle dimensioni "finite" del modello, ne tien conto dell'iterazione con le altri parti che lo compongono. Certo, vedere graficamente la "distribuzione" delle forze di pressione attorno al profilo "infinito", si può essere interessante, ma per utilizzarle per trarne conclusioni riguardo al modello ce ne passa ...!!!! A. PS: XFLR5 ci viene in aiuto proprio perchè tiene conto delle dimensioni "finite" del modello, ma ciò ovviamente necessita un minimo di applicazione e allo studio in +... |
15 gennaio 12, 18:06 | #214 (permalink) Top | |
Gran Decapo Data registr.: 18-03-2007
Messaggi: 14.606
| Citazione:
"Exact Theory of Longitudinal Flight Stability" by Helmut Quabeck March, 1, 2007 .doc-file .PDF-file sul sito di Quabeck. Quando hai finito fammi sapere. | |
15 gennaio 12, 19:32 | #215 (permalink) Top | |
User | Citazione:
Dico semplicemente che il NACA009 nn mi sembra essere l'esempio "più adatto" per capire, approfondire le cose guardando alle sue polari @Re modellistici, e dove peraltro risulta essere oltremodo "critico", non solo dalle polari XFOIL, ma anche nella realtà pratica vista e rivista sui modelli, che dalle prove pubblicate di note gallerie del vento di Riferimento, in verità sotto 400kRe e rispetto ad altri + moderni pare proprio na ciofeca !!! Sui pianetti degli F3J è dimostrato che il NACA009 nn funziona se non Turbolato si dorso e ventre..., di certo va peggio su modelli più piccini, e forse comincia a cavicchiarsela in un modello da pendio da oltre 3m (tipo Stingray..) a Velocità non di meno superiori @150Kmh !!!!! (i modelli a motore pare che qui possano essere esclusi...) Guardando il NACA0009 @100KRe, è evidente quanto le polari numeriche di XFOIL (il motore di calcolo di Profili) fatichino a "convergere" ed offrano "andamenti" ben poco realisitici.... Per Re Modellistici, sia di ali di piccoli modelli (e perchè no anche di + grandi...), che di stabilizzatori, e anche per del Spessori del 9%, stanno cominciando a piacermi molto positivamente dei profili appositamente disegnati per controllare la rampa di transizione, quali la serie TP42 per corde maggiori di 12-15cm e TP29 per tip e stabilizzatori. Come ti ha ben fatto notare Beppe, sei proprio sicuro che : "se dò una tacca a cabrare al profondità e il movimento della spatolina è di un grado il risultato che ottengo è di picchiare il modello ? " Le coordinate ed interessanti considerazioni pratiche nell'uso dei profili di Thierry Platoon è possibile scaricarle da qui : TP96 In tempi + recenti del concepimento degli algoritmi per generare i NACA (originariamente dedicati ad applicazioni full-size), parecchi altri profili sono stati ottimizzati, analizzati, misurati, per i nostri Re, cercando sul web, molti di questi sono disponibili tra gli scaricabili. Infine, ri-badisco ancora una volta che nn si può analizzare il comportamento del modello completo andando a guardare solo i profili, e spesso confondendo Equilibrio, Stabilità,e Manovrabilità !!! Eeehh.. di certo se Kanneworf successivamente ai capitoli sui Principi di Aerodinamica e dei Profili da "soli", così come a correggere le polari in funzione di queste, ed agli aspetti generali del volo (la prima 50ina di paginette da pag32 a pag87...), ci invita a leggere anche i successivi capitoli relativi sia agli aspetti legati alla Geometria delle Velature e relativa iterazone tra le vaie parti del modello, descrive "bene" anche il comportamento e gl aspetti ed uso dei profili Variabbili, ed il relativo confronto con profili "fissi" (cap10, peraltro applicabile ma solo in parte dei discorsi fin qui fatti..), tratta abbastanza esaureintemente le tematiche si Stabilità e Manovrabilità, i concetti base dell'Equilibrio, e piuttosto insistentmente su Centraggio e Stabilità Longitudinale (DL, CG, Angoli di Svio ecc..), sia Statica che DINAMICA, così come della Manovrabilità sull'asse Trasversale, Verticale e Longitudinale e relativo Controllo fino a pag240, forse meritano ri-lettura con un minimo di attenzione che va un po' oltre i soli profili.... Non so quanto possa essere Utile semplificare oltremodo argomenti così complessi, se nn a generare inutile confusione specie tra i meno esperti, me compreso. Ogni possibile punto di sintesi è ovviamente gradito purchè chiaro, argomentato in corrispondenza della Realtà, se poi nn è non sarà totalmente esaustivo in ogni suo aspetto, è auspicabile che lo sia almeno in parte. In ogni caso, al di la della tentazione a voler capire e spiegare tutto ad ogni costo (che ogni tanto sento "premere" anche in me.. ) è certo che senza un minimo di studio e preparazione, ogni considerazione rischia di lasciare il tempo che trova !!!!!!!!!!! A. | |
15 gennaio 12, 20:05 | #216 (permalink) Top | |
User | Citazione:
Ad una "fulminante" occhiata, e quindi ad "occhio" , me'è parso di intravvedere buona parte della Matematica di cui mi accennava Frank aver recentemente implementato in XFLR5.... Purtroppo è evidentissomo che non è per tutti, almeno nn lo è per me..), ma forse qualche spunto più "leggibile" ad un'occhiata + attenta lo si trova... Hai già qualche indicazione del punto dove viene "al sodo" riguardo a stabilizzatore tuttomobile contro il fisso+spatolino ?? A. | |
15 gennaio 12, 20:09 | #217 (permalink) Top |
User Data registr.: 29-11-2002 Residenza: Mountain View, CA
Messaggi: 4.390
| Sì, la trattazione del Dr. Quabeck è ovviamente limitata all'aspetto longitudinale che è anche il topic di questo thread, come ti dicevo l'altra sera considerazioni simili si possono fare anche per quello laterale, AVL e XFLR5 lo fanno.
__________________ The number you dialed is imaginary. Please rotate your phone 90 degrees and redial. |
15 gennaio 12, 21:03 | #218 (permalink) Top | |
User Data registr.: 05-07-2004 Residenza: vengo da sinistraaaaa
Messaggi: 4.132
| Citazione:
__________________ Tendenza: Chuck Yeager Volatile: Aquila Elemento: Titanio | |
15 gennaio 12, 21:44 | #219 (permalink) Top | |
User Data registr.: 21-05-2009
Messaggi: 2.780
| Citazione:
Riporto*di*seguito*alcune*che*mi*sono*saltate*all' occhio For the planned F3J-model the optimum working point is around cl = 0.9 Remarks and comparison to flight experience This c.g.-position appears to be rather far in front of the lifting wing; however, two aspects have to be considered: First, the chosen working point cl = 0.9 is rather high but the corresponding c.g. will allow to achieve all stationary flight conditions for all smaller cl-values. Secondly, for exemplary reasons the aerodynamic coefficients and their derivatives for this particular F3J-case have been developed by means of the X-Foil-program of Mark Drela which to some degree seems to overemphasise the viscous airstream effects. The Profile-program of Richard Eppler on the other hand appears to underestimate them and would have yielded a position for the aerodynamic centre closer to the quarter-point of the MAC. As the long term practical experience of the author with many different models has shown, in most cases the aerodynamic centre of the lifting wings is closer to the 25 % position then to that resulting from the X-Foil-program! But, fortunately, in practice a bad position of the c.g. will soon be found out and corrected. As has been shown in previous chapters, the c.g.-position is the point of reference for the static and dynamic stability of the glider. If the aerodynamic centre of the wing is assumed too far in front of the wing and consequently also the c.g. it may happen that the stability-characteristics such as the elevator size and the momentum arm may be chosen too small. This will further still be discussed in the next section. E.g. for a working point cl = 0.8 the position of the aerodynamic centre would turn out to be at 19.4 % and that of the c.g. at 28.2 %, the soaring performance would not much differ. A comparison shows that the calculation of the static stability-measure found by consideration of viscous airstream effects as they result from the X-FOIL-profile-analysis yields a value close to that of the non-viscous stability-consideration. In principle this is due to the nearly equal shift of XN and Xc.g. towards the leading edge of the lifting wing as a result of the viscous airstream-effects on the cl- and cm-derivatives as predicted by the X-Foil-program. But: After all the experience the author has gained in designing and RC-flying of many different glider-models in over 30 years, it was never found that for a model like the one under consideration with a cambered airfoil like the HQ/W-2.25/8.5 the c.g. should be that close at the quarter-point of the MAC for the optimum working-point (cl = 0.9) as it turns out by means of the X-Foil profile-analysis. On the contrary, in flight practice the c.g. was always found to be close to the one calculated for the optimum working-point by means of the non-viscous approach as given above. This is why the author prefers the PROFILE-program of Prof. Richard Eppler over X-FOIL, at least for calculations of flight stability. Calculation of the c.g. and stability-measures never failed when based on the PROFILE-analysis while X-FOIL always predicts a c.g. too far towards the front of the planes. One major conclusion to be drawn may be that the profile-analyses as conducted by the X-FOIL-routines obviously overemphasize the viscous effects and thus predict rather strong deviations of the -derivatives for the lift and momentum-coefficients from the ideal non-viscous slopes, in particular for low Re-numbers. A profound revision of the parts of the program with respect of the influence of viscous effects would for sure be most appreciated by all modellers! Below is given the 3 side view of the Diamant Plus, a functional glider model of the author for thermal and alpine slope soaring and model trekking, designed and built in 2005/06. The model is equipped with an electric motor, used for launching and/or as emergency return aid in the mountains. This model is a further development of a similar model which was first launched in the early eighties. From the original Diamant the fuselage was taken over for practical reasons und thus the momentum-arm of the model was predetermined. In our home-page HQ-Modellflug one can find all details about the design aspects for the new development. The airfoil chosen for the lifting wing is the HQ/W-3.5/13 straight from the wing root till the ends of the ailerons. From there towards the tips of the wing the sections were lofted to the HQ/Winglet-airfoil and twisted by about -0.7° in order to achieve good-natured stall behaviour. As can be seen in the graphic, the model is equipped with flaps and flapperons which allow to deflect the wing-sections as desired for any flight state from very slow to very high. By means of the left graphic showing gliding numbers and sinkrates for the lifting wing of the Diamant Plus including induced drag, the aerodynamic working point was chosen to be at cl = 1.2. The major conclusions which can be drawn from this example for glider-models with higher mass-load are The mass-moment of inertia should be kept as low as possible in order to achieve the best possible dynamic longitudinal stability, in particular this hold true for acrobatic-gliders, As pointed out repeatedly, the weight of the model tail should be kept as low as possible, because the tail has the largest distance of all parts to the c.g. and thus contributes most to the mass-moment of inertia, For scale-gliders the size and the shape of the elevators are given by the original. It often happens, that these elevator-proportions are not sufficient for a stable flight-behaviour since they do not provide the required contribution at model-scale. In those cases it may not disturb the scale impression when the span-width of the model is increased by 10 to 15 %. At functional models with higher load the dynamic stability can be influenced by the length of the momentum-arm as well as by shape and size of the elevator. While designing such a model it has always to be kept in mind that attenuation by the elevator is counterbalanced by its mass moment of inertia! Whilst the longitudinal stability behaviour oft the above F3J- and Diamant Plus-examples was determined, it was already indicated how this could best be performed. Concluding, recommendations will be given for a more universal proceeding at the design of a plane with required longitudinal stability behaviour. Design of a functional plane 1. When designing a new functional model as for F3-classes, acrobatic flying, or free just-for-fun-flying, the first step should be to determine the dimensions and shape for the lifting wing. Thereat usually major attention should be paid to a good lift-efficiency of the wing, expressed by the shapefactor aw. E.g. this efficiency can exactly be calculated by means of the FMFM-program of the author, for a quasi-elliptical wing-shape it is approximately given by consideration of the aspect ratio: aw w/(2+ (w2 + 4))1/2. 2. In a second step the quasi-stationary cl-cd-polar corresponding to the expected wing-load m/A of the plane should be determined for the airfoil of the lifting wing. From these polars the corresponding quasi-stationary sinkrates and cL/cD-ratios for the lifting wing can be developed as functions of cl, where cD should include the airfoil- and the induced drag of the wing. As shown for the examples above, from these curves the optimum cl-working-point can be determined either for best gliding-angle or minimum sinkrate. 3. In a third step the position for the centre of gravity c.g. should be fixed according to equation 7.3.6 in section 7.3.c. Here the problem appears that the position of the aerodynamic centre of the wing XNw is affected by viscous airstream influences on lift and momentum of the chosen airfoils, in particular at lower Re-numbers. As discussed earlier, if these effects are determined by X-FOIL-analyses of the wing-sections the calculated position of XNw does not well coincide with practical experience, while the PROFILE-program supplies reliable results which are close to the quarter-point of the MAC. For normal planes with sufficient accuracy the c.g. can be chosen according to Xc.g./ĉ = 0.25 cMo/cLw(opt). This c.g. choice also leaves room for flight states with non-zero lift at the elevator and in particular for the up and down deflection of flaps. 4. In a fourth step, next the value for the static stability measure = (XN −Xc.g.)/ĉ needs to be chosen. This measure is often also given in percentages of the MAC. According to experience lower weight models will already fly quite stable with 10 % stability, however, models with higher weight should better have 15 - 20 % static stability or even more. With chosen and Xc.g. the necessary position of the overall aerodynamic centre XN for the required static stability follows. Then, by means of equation 4.17 and under the assumption that ahx ah, aw× aw , and rNh rh an idea for the size Ah of the elevator and its momentum arm rh can be developed as shown in the examples. For aerodynamic reasons, namely in order to keep the drag of the elevator as low as possible, it may be advisable to choose the elevator area Ah as small as the aerodynamic characteristics of the elevator-airfoil allow and to compensate this with a longer momentum arm. E.g. for larger F3J-models Ah/A 0.09 would be sufficient in order to achieve appropriate aerodynamic elevator performance with the airfoil HQ/W-0/9. Design of a Scale-Model 1. When designing a scale-model, the first step should be to determine the dimensions and shape for the lifting wing and the elevator from the corresponding data of the original. There from the lift-efficiency-factors aw and ah are to be determined. E.g. this efficiency can exactly be calculated by means of the FMFM-program of the author, for a quasi-elliptical wing-shape (which is applied for almost all modern gliders) they can approximately be calculated by means of the aspect ratios: aw w/(2+ (w2 + 4))1/2 and ah h/(2+ (h2 + 4))1/2. 2. In a second step like for the functional planes the quasi-stationary cl-cd-polar corresponding to the expected wing-load m/A should be determined for the airfoil of the lifting wing. From these polars the corresponding quasi-stationary sinkrates and cL/cD-ratios for the lifting wing can be developed as functions of cl, where cD should include the airfoil- and the induced drag of the wing. As shown for the examples above, from these curves the optimum cl-working-point can be determined either for best gliding-angle or minimum sinkrate of the scale-plane. 3. In a third step the position for the centre of gravity Xc.g. should be determined according to equation 7.3.6 in section 7.3.c. As discussed earlier for the functional models, here the problem may appear that the position of the aerodynamic centre of the wing XNw is affected by viscous airstream influences on lift and momentum of the chosen airfoils, in particular at lower Re-numbers. But in general for normal planes with sufficient accuracy the c.g. can be chosen according to Xc.g./ĉ = 0.25 cMo/cLw(opt). Again as before this c.g. choice also leaves room for flight states with non-zero lift at the elevator and in particular for the up and down deflection of flaps. 4. As soon as the position of the c.g. is determined, the length of the momentum-arm rh (the distance of the aerodynamic centre of the elevator from the c.g.) can be determined, and based on the geometric data of the model and the wing and elevator efficiencies, aw and ah, the position of the overall aerodynamic centre of the scale-model can be found by means of equation 4.1.17, and finally the static stability measure . If the static stability of a larger scale-glider should turn out to be < 0.15 then the stall behaviour of the model at slow soaring may become critical. In such cases an enlargement of the elevator-span should be considered, since this would not harm the scale impression and would be the easiest way to improve the static stability. Unfortunately the static stability of Old-timer-glider often also suffers from too short distances of the elevator from the c.g., in theses cases it may be advisable to also lengthen a bit the rear fuselage-part. | |
15 gennaio 12, 21:54 | #220 (permalink) Top |
User Data registr.: 29-11-2002 Residenza: Mountain View, CA
Messaggi: 4.390
|
Non è chiaro cosa mai c'entri con le code, comunque complimenti per la citazione.
__________________ The number you dialed is imaginary. Please rotate your phone 90 degrees and redial. |
Bookmarks |
| |
Discussioni simili | ||||
Discussione | Autore discussione | Forum | Commenti | Ultimo Commento |
Diedro longitudinale | stroncapaperi | Aeromodellismo Alianti | 143 | 04 agosto 09 21:35 |
diedro longitudinale | emme2 | Aeromodellismo Alianti | 18 | 23 febbraio 08 19:15 |
diedro longitudinale | cantone11 | Aeromodellismo Progettazione e Costruzione | 1 | 01 settembre 07 09:48 |
Diedro longitudinale | danielep | Aeromodellismo Alianti | 74 | 17 luglio 07 17:35 |
Influenza del diedro longitudinale sullo stallo | DoC | Aeromodellismo Progettazione e Costruzione | 27 | 19 luglio 05 14:31 |